Effect of adaptation to ethanol on cytoplasmic and membrane protein profiles of Oenococcus oeni.
نویسندگان
چکیده
The practical application of commercial malolactic starter cultures of Oenococcus oeni surviving direct inoculation in wine requires insight into mechanisms of ethanol toxicity and of acquired ethanol tolerance in this organism. Therefore, the site-specific location of proteins involved in ethanol adaptation, including cytoplasmic, membrane-associated, and integral membrane proteins, was investigated. Ethanol triggers alterations in protein patterns of O. oeni cells stressed with 12% ethanol for 1 h and those of cells grown in the presence of 8% ethanol. Levels of inosine-5'-monophosphate dehydrogenase and phosphogluconate dehydrogenase, which generate reduced nicotinamide nucleotides, were decreased during growth in the presence of ethanol, while glutathione reductase, which consumes NADPH, was induced, suggesting that maintenance of the redox balance plays an important role in ethanol adaptation. Phosphoenolpyruvate:mannose phosphotransferase system (PTS) components of mannose PTS, including the phosphocarrier protein HPr and EII(Man), were lacking in ethanol-adapted cells, providing strong evidence that mannose PTS is absent in ethanol-adapted cells, and this represents a metabolic advantage to O. oeni cells during malolactic fermentation. In cells grown in the presence of ethanol, a large increase in the number of membrane-associated proteins was observed. Interestingly, two of these proteins, dTDT-glucose-4,6-dehydratase and D-alanine:D-alanine ligase, are known to be involved in cell wall biosynthesis. Using a proteomic approach, we provide evidence for an active ethanol adaptation response of O. oeni at the cytoplasmic and membrane protein levels.
منابع مشابه
Transcriptomic and proteomic analysis of Oenococcus oeni PSU-1 response to ethanol shock.
The correct development of malolactic fermentation depends on the capacity of Oenococcus oeni to survive under harsh wine conditions. The presence of ethanol is one of the most stressful factors affecting O. oeni performance. In this study, the effect of ethanol addition (12% vol/vol) on O. oeni PSU-1 has been evaluated using a transcriptomic and proteomic approach. Transcriptomic analysis reve...
متن کاملFlow cytometric assessment of membrane integrity of ethanol-stressed Oenococcus oeni cells.
The practical application of commercial malolactic starter cultures of Oenococcus oeni surviving direct inoculation in wine requires insight into the mechanisms involved in ethanol toxicity and tolerance in this organism. Exposure to ethanol resulted in an increase in the permeability of the cytoplasmic membrane, enhancing passive proton influx and concomitant loss of intracellular material (ab...
متن کاملMembrane fluidity adjustments in ethanol-stressed Oenococcus oeni cells.
The effect of ethanol on the cytoplasmic membrane of Oenococcus oeni cells and the role of membrane changes in the acquired tolerance to ethanol were investigated. Membrane tolerance to ethanol was defined as the resistance to ethanol-induced leakage of preloaded carboxyfluorescein (cF) from cells. To probe the fluidity of the cytoplasmic membrane, intact cells were labeled with doxyl-stearic a...
متن کاملAdaptation of the wine bacterium Oenococcus oeni to ethanol stress: role of the small heat shock protein Lo18 in membrane integrity.
Malolactic fermentation in wine is often carried out by Oenococcus oeni. Wine is a stressful environment for bacteria because ethanol is a toxic compound that impairs the integrity of bacterial membranes. The small heat shock protein (sHsp) Lo18 is an essential actor of the stress response in O. oeni. Lo18 prevents the thermal aggregation of proteins and plays a crucial role in membrane quality...
متن کاملTranscriptomic and Proteomic Analysis of Oenococcus oeni Adaptation to Wine Stress Conditions
Oenococcus oeni, the main lactic acid bacteria responsible for malolactic fermentation in wine, has to adapt to stressful conditions, such as low pH and high ethanol content. In this study, the changes in the transcriptome and the proteome of O. oeni PSU-1 during the adaptation period before MLF start have been studied. DNA microarrays were used for the transcriptomic analysis and two complemen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 70 5 شماره
صفحات -
تاریخ انتشار 2004